Twistor Interpretation of Harmonic Spheres and Yang–Mills Fields

نویسندگان

  • Armen Sergeev
  • Palle Jorgensen
چکیده

We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic spheres conjecture stating the existence of the bijective correspondence between based harmonic spheres in the loop space ΩG of a compact Lie group G and the moduli space of Yang–Mills G-fields on R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli Space of Self-Dual Gauge Fields, Holomorphic Bundles and Cohomology Sets

We discuss the twistor correspondence between complex vector bundles over a self-dual four-dimensional manifold and holomorphic bundles over its twistor space and describe the moduli space of self-dual Yang-Mills fields in terms of Čech and Dolbeault cohomology sets. The cohomological description provides the geometric interpretation of symmetries of the self-dual Yang-Mills equations.

متن کامل

Twistor actions for non-self-dual fields; a new foundation for twistor-string theory

Twistor space constructions and actions are given for full Yang-Mills and conformal gravity using almost complex structures that are not, in general, integrable. These are used as the basis of a derivation of the twistor-string generating functionals for tree level perturbative scattering amplitudes of Yang-Mills and conformal gravity. The derivation follows by expanding and resumming the class...

متن کامل

Conformal Supergravity in Twistor-string Theory

Conformal supergravity arises in presently known formulations of twistor-string theory either via closed strings or via gauge-singlet open strings. We explore this sector of twistor-string theory, relating the relevant string modes to the particles and fields of conformal supergravity. We use the twistor-string theory to compute some tree level scattering amplitudes with supergravitons. Since t...

متن کامل

Twistor actions for non-self-dual fields; a derivation of twistor-string theory

Twistor space constructions and actions are given for full Yang-Mills and conformal gravity using complex structures that are not, in general, integrable. These are used as the basis of a derivation of the twistor-string generating functionals for tree level perturbative scattering amplitudes of Yang-Mills and conformal gravity. The derivation follows by expanding and resumming the classical ap...

متن کامل

Complexification, Twistor Theory, and Harmonic Maps from Riemann Surfaces

Penrose's twistor theory and many other ideas of mathematical physics are based on the notion of complexification. This notion is explained and examples of its apphcation in physics and mathematics are described. In particular, the well-known analogy between Yang-Mills fields and harmonic maps of Riemann surfaces becomes rather stronger after complexification. This strengthening is the main poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015